1-) DNA NEDİR VE NEREDE BULUNUR ?
DNA "Deoksi Ribo Nükleik Asit" isimli bir tür molekül grubunun kısaltılmış isimidir. DNA'nın çift zincirli ip merdivene benzer. Çift zincirli yapıdaki DNA zinciri oldukça uzun bir zincirdir.Bu zincir hücre içindeki özel enzimler ve proteinler aracılığı ile paketlenir. Nasıl ki uzun bir ipi makaraya düzenli bir şekilde sarıyorsanız, hücrede buna benzer bir mekanizma ile DNA yı paketleyerek çekirdeğinin (Nukleus) içine yerleştirir.DNA her hücrede bulunur.Örneğin böbreklerinizin hücrelerinde, karaciğerinizin hücrelerinde, kemik hücrelerinizde kısacası vücudunuzdaki her hücrede DNA molekülü mevcuttur.
2-) DNA’NIN KEŞFİ:
MİESCHER : 1869 yıllarında ilk olarak Miescher tarafından hücre çekirdeğinde özel bir madde bulundu ve buna Miescher “ Nüklein” adını verdi . Daha sonra ise nükleit asitlerin iki tipte olduğu anlaşıldı . Birincisi timüsten elde edilen timonükleik asit, ikincisi bira mayalarından elde edilen zimonükleik asit . Timonükleik asit hayvanlar alemine , zimonükleik asit ise bitkiler alemine özgü sayıldı.
FEULGEN – ROSSENBECK : 1924 yıllarında ise Feulgen ve Rossenbeck timonükleik asidin çok duyarlı bir tepkimesini tanımladılar ; böylece her iki nükleik asidin her iki canlılar aleminde bulunduğu ispat edilebildi. ondan sonra timonükleik asit çekirdeğe , zimonükleik asit ise sitoplazmaya ait özgü yapı maddeleri sayıldı.
LEVENE – MORİ : 1929 yılında Levene ve Mori tarafından timonükleik asidin DNA , zimonükleik asidin ise RNA Olduğu anlaşıldı.
WATSON – CRİCK : 1953 yılında Watson ve Crick DNA molekülünün kendine has özelliklere sahip bir çift sarmal yapı halinde bulunduğunu ileri sürdüler. Bu araştırıcıların önerdikleri DNA yapısı o tarihlerde başka araştırıcılar tarafından ortaya konulan DNA ya ilişkin önemli bulgulara dayanmaktadır. Bunlardan biri, Wilkins ve Franklin tarafından, izole edilmiş DNA fibrillerinin X-ray ışınlarını kırma özelliklerinin açıklanmasıdır. Elde edilen X ışını fotoğrafları, DNA nın zincirlerindeki bazların diziliş sırasına bağlı olmaksızın, çok düzenli biçimde dönümler yapan bir molekül olduğunu göstermektedir. Ayrıca TMV (tütün Mozaik Virüsü) üzerinde yapılan çalışmalar da DNA ile ilgili çalışmalarda ışık tutmuştur.
İşte Watson ve Crick bu bulguları değerlendirerek böyle özelliklere sahip DNA makro molekülünün sekonder yapısına ait bir model geliştirdiler. Bu modele göre, bir çok sorunun açıklanması yapılabildiğinden dolayı 1962 yılında bu iki bilim adamına NOBEL ÖDÜLÜ verildi.
Bir başka önemli bulguda Chargaff tarafından saptanmıştır. Herhangi bir türe ait DNA nın nükleotidlerine parçalandığında serbest kalan nukleotidlerde adenin miktarının timine, guanin miktarının da sitozine daima eşit olduğunun saptanmasıdır.. Yani Chargaff kuralı‘na göre doğal DNA moleküllerinde adeninin timine veya guaninin sitozine oranı daima 1’e eşittir. (A/T=1 ve G/C=1).
3-) DNA’NIN ŞEKLİ VE YAPISI :
DNA molekülü, heliks (=sarmal) şeklinde kıvrılmış, iki kollu merdiven şeklindedir. Kollarını, yani merdivenin kenarlarını, şeker (deoksiriboz) ve fosfat molekülleri meydana getirir. Deoksiriboz ile fosfat grupları ester bağlarıyla birbirlerine bağlanmıştır. İki kolun arasındaki merdiven basamaklarında gelişigüzel bir sıralanma yoktur; her zaman Guanin (G), Sitozin’in (C ya da S); Adenin (A), Timin’in (T) karşısına gelir. Hem pürin (yani adenin ve guanin) ile pirimidin (yani sitozin ile timin) arasındaki hidrojen bağları, hemde diğer bağlar, meydana gelen heliksin düzgün olmasını sağlar. Pürin ve pirimidin bazları, yandaki şekerlere (Riboz), glikozidik bağlarla bağlanmıştır. Baz, şeker ve fosfat kombinasyonu, çekirdek asitlerinin temel birimleri olan nükleotidleri meydana getirmiştir. Dört çeşit nükleotid vardır. Bunlar taşıdıkları bazlara göre isimlendirilirler (Adenin, Guanin, Sitozin,Timin).
NÜKLEOZİT
AZOTLU ORGANİK BAZ + DEOKSİRİBOZ ŞEKERİ + FOSFORİK ASİT
NÜKLEOTİT
Nükleotidler birbirlerine fosfat bağlarıyla bağlanarak, şeker ve fosfat kısımlarının birbirlerini izlediği serilerden oluşan bir omurgaya sahip uzun ve dallanmış polinükleotid zincirlerini meydana getirmiştir. Kovalent ester bağları veya fosfodiester bağları olarak da bilinen bu bağlar son derece kuvvetlidir.
Fosfodiester bağlarının varlığı DNA molekülünün tek zincirli yapı halinde iken bile dayanıklı ve stabil yapıda olmasını sağlar. Genetik mühendisliğinin hedeflerinden biri olan klonlama çalışmaları, doğal yolla gerçekleşmesi mümkün olmayan kovalent bağ kırılmalarını gerçekleştirerek yeni türler oluşturma çabalarını arar.
Hidrojen bağları daima bir pürin(A,G) ile bir pirimidin (T,C) bazı arasından meydana gelir. A-T baz çiftinde 2 hidrojen bağı, G-C baz çiftleri arasında ise 3 hidrojen bağı bulunmaktadır. Hidrojen bağlarının özelleşmesi; anahtar kilit modelinini andıran, uygun nukleotid moleküllerinin karşılıklı gelerek birbirlerine yine uygun sayıda hidrojen bağları ile bağlanmasını sağlar. Böylece zincirin bir kolunda bulunan nukleotidlerin dizilişi,karşı kolda bulunan nukleotidlerin dizilişini bir çeşit dikte ve kontrol eder. Tesadüfe bırakmayan bir titizlikle molekül yapısı oluşturulur ve kontrol edilir.
DNA molekülünün en önemli özellik iki polinükleotid zincirin birbirinin tamamlayıcısı olmasıdır. Pozitif (+) ve negatif (–) iki polinukleotid zincirlerinin tamamlayıcılık özelliği,genetik materyalin işlevlerini doğru biçimde nasıl yapabildiğinin açıklanması açısından DNA’nın en önemli temel özelliklerinin başında gelir.
DNA bir organizmanın oluşuma ilişkin bilgileri taşır.DNA molekülleri, hücre çekirdeğinde bulunurlar ve vücudumuzda bulunan tüm proteinleri oluşumu sırasındaki kodlamış bilgileri içerir.DNA’nın protein yapma işlemi ,inanılmayacak derecede kusursuzdur.
DNA’dan RNA sentezi (Transkripsiyon) :
Erkek bir canlıdan gelen spermin taşıdığı bir miktar DNA ile dişi bir canlıdan gelen yumurtanın taşıdığı DNA birleşerek tam bir DNA’yı verir. Bu DNA meydana gelecek yavrunun tüm özelliklerini içinde barındırır. Mesela bu canlının DNA’sında 1 milyar gen var ise bu genlerin 500 milyon tanesi anneden 500 milyon tanesi de babadan gelir. Yumurta ile spermin birleşmesinin ardından DNA’daki şifreler çözülerek, bir yumurta (zigot) dan bir canlıyı meydana getirmeye başlar. İlk aşama RNA sentezidir. Bu işlem DNA’nın açılmasıyla başlar. DNA’daki bazlar karşı karşıya gelip her iki omurgayı birleştirmişlerdi. Fakat bu bazlar aralarındaki bağları kopararak DNA’nın çift zincirli yapısını tıpkı bir "fermuar" gibi açmaya başlar. DNA çözülmeye başladıkça "RNA polimeraz" adı verilen özel bir protein DNA’nın üzerinde gezerek onu okumaya ve RNA’yı sentezlemeye başlar.
Şekilde DNA çözülmüş bir vaziyette görülmektedir. Büyük mavi bölge RNA polimerazı temsil etmektedir. Yeşil şerit ise sentezlenen RNA’dır. DNA zinciri açılmış ve RNA polimeraz enzimi vasıtasıyla DNA’daki bazlara karşılık gelen diğer bazlar birbirlerine eklenerek RNA üretilmektedir. Üretilen RNA’nın DNA’dan tek farkı Adenin bazının karşısına Timin yerin "U" harfiyle gösterilen "Urasil" bazının gelmiş olmasıdır. Üretimi tamamlanan RNA daha sonra DNA üzerinden ayrılarak bir dizi işleme tabii tutulur.
RNA dan protein sentezi (Translasyon):
Düzeltme işlemleri tamamlanmış olan mRNA daha sonra çekirdek (nukleus) den çıkarak "Ribozom" adı verilen bir organele doğru yol almaya başlar. Ribozoma ulaşan mRNA ribozoma bağlanır. mRNA’nın bir özelliği ise DNA’daki gibi sıralanan bazların 3’lü gruplar halinde ayrılmış olmasıdır. Bir örnek verelim;
DNA üzerindeki kodonlar "AATGCCGATGTA" şeklinde ise, sentezlenen mRNA’nın görünümü "UUA-CGG-CUA-CAU" şeklinde olacaktır. Baz sıralamasında bir değişme yoktur, yalnızca bazlar 3’lü gruplar halinde taksim edilmişlerdir. Taksim edilen bu 3’lü gruplara ise "Kodon" adı verilir. Tabii RNA da adenin bazına karşılık urasil bazının, guanin bazına karşilik ise sitozin bazının geldiğini unutmamak gerekir. Bu şekilde üretilen mRNA ribozoma bağlandıktan sonra 3’lü grupların okunmasına başlanır. tRNA adı verilen bir başka RNA çeşidi ise bildiğimiz mRNA veya DNA kadar uzun değildir. tRNA (Taşıyıcı RNA) üzerinde yalnızca 15-20 baz sırası bulundurur. TRNA’nın diğer bir özelliği ise birbiri ardına sıralanan bazların bir daire oluşturacak şekilde bağlanmasıdır. Bunu halay çeken bir grup insana benzetebiliriz. tRNA halkasının üzerinde iki önemli bölge vardır. Bu bölgelerden ilki, taşıyacağı aminoasitin tanınmasını sağlayan bölgedir. Diğer bölge ise tRNA’nın mRNA’ ya bağlanacağı, 3 adet baz sırasından oluşan bölgedir. Bu bölgeye ise "Anti-kodon" adı verilir. tRNA üzerinde bulunan, "anti-kodon" adı verilen ve yalnızca 3 adet baz sırasından oluşan bu bölge, ribozoma tutunmuş mRNA üzerindeki "kodon" adı verilen 3’lü gruplara bağlanır.
Tabii tRNAların anti-kodonları, mRNA üzerindeki kodonlara sırasıyla bağlanırken beraberlerinde taşıdıkları aminoasitleri de getirmişlerdir. Bu yüzden tRNA’ya “Aminoasiti taşıyan RNA” adı verilmiştir. tRNAlar aminoasitleri taşıyıp sırasıyla kodonlara bağlandıkça, tRNAların sırtlarındaki aminoasitlerde birbirleriyle bağlanmaya başlarlar. Aşağıdaki şekilde mRNA (messenger RNA) daki kodonlardan birisine bağlanmakta olan bir tRNA görülüyor. Görüldüğü gibi mRNA’daki kodonun baz dizilimi GCC, bu kodona bağlanan tRNA’nın ise anti-kodonu CGG şeklindedir.
tRNA üzerinde bulunan pembe halka ise "aminoasit"i temsil etmektedir.
Yüzlerce binlerce tRNA yan yana dizildiklerinde, üzerlerindeki aminoasitlerde yan yana gelmiş olur. İşte yan yana gelmiş olan bu aminoasitler birbirleriyle bağ yaparak proteini sentez etmeye başlar.
Yukarıda anlatılan olayları aşağıdaki şekil gayet iyi açıklamaktadır. Sağ tarafta yaklaşmakta olan mavi renkli tRNAlar görülüyor. tRNAların üzerlerinde ise yeşil ve sarı renklerle gösterilmiş "aminoasit” ler görülüyor. Yeşil renkli şerit mRNA’yı, boynuzlu gri yapı ise ribozomu temsil etmektedir.
tRNAlar sırasıyla mRNA üzerine yerleştikten sonra, sırtlarındaki aminoasitler bağ yapar. Tam bu sırada işi biten tRNA yükünü boşaltmış olarak mRNA’dan bağını koparır ve ribozomdan ayrılır.
Fakat taşıdığı aminoasit, kendinden önceki tRNA’nın getirdiği aminoasitle bağ yapmış olarak protein zinciri oluşumuna katılır.
Proteini üretilen hücrenin farklılaşması
Buraya kadar olan aşamalar hücrede protein sentezi için gerekli işlemleri kapsıyordu.Bundan sonra ise üretilen proteinin çeşidine göre hücrenin kazandığı fonksiyondur. Bir yumurta ile bir spermin birleşmesiyle meydana gelen yapı zigot adını alır ve tek bir hücreden ibarettir. Zigot içerisinde DNA kendisinin bir kopyasını çıkarır. Dolayısıyla hücrede DNA miktarı iki katına çıkmış olur. Fakat hücre derhal bölünmeye başlar bu DNAlardan birisi bir hücreye giderken diğer DNA ise ikinci yavru hücreye aktarılır.Böylelikle hücre ikiye bölünmüş olur. Bölünmeler ta ki anne karnında bir bebeğin meydana gelmesine dek sürer. Yani tek bir hücre, o kadar çok bölünme geçirir ki sayıları trilyonları bulur ve bir canlı embriyoyu (anne karnındaki bebek) meydana getirir. DNA şifrelemesi ise bu noktada devreye girer.
Bir önceki basamak protein sentezi ile ilgiliydi. Fakat proteinler çeşitli hücreler için farklı tiplerde üretilir. Bir yavru anne karnında gelişirken, yavrunun gözlerini oluşturacak hücrelerdeki DNAlar yalnızca göz organı ile ilgili proteinleri üretirler. Aynı şekilde yavrunun beynini oluşturacak hücrelerin DNAları ise yalnızca beyin organı ile ilgili proteinleri üretirler. Burada önemli olan nokta şudur; insanın kemik hücresi olsun, karaciğer hücresi olsun, böbrek hücresi olsun kısacası vücudunun her bölgesindeki hücrelerin içindeki DNAlarda insanın bütün organlarını oluşturacak bilgiler saklıdır. Fakat saklanan bu bilgilerden yalnızca ilgili organ için üretilecek proteinlerin meydana getirilmesi sağlanır. Yani her hücrede insan vücudunun her organının protein bilgileri saklanır fakat bu proteinlerin hepsi üretilmez. Yalnızca meydana getirilecek organla ilgili proteinler üretilir.Bir organda, organla ilgili proteinler dışında DNA da saklanan diğer proteinlerin üretilmemesi için DNA nın üzeri "Histon" adı verilen özel bir proteinle örtülür.
Hücrelerin programlanmış bir şekilde farklı farklı proteinler üretip farklı organlara dönüşmesi olayına farklılaşma (morfogenez) denir. Bugün bilim adamlarının kafasını kurcalayan en büyük problem ise hücrelerdeki "Histon" ların hangi genlerin üzerini örtüp hangilerinin üzerini açık bırakacağını nereden bildiğidir.